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Abstract

This paper assumes an investor who has a non-traded position operating in a sto-
chastic interest rates environment. The investor trades continuously either distinct
futures contracts or distinct forward contracts in order to maximize his expected
utility of terminal wealth. In order to reach the welfare level of the first best optimum,
the investor must incorporate into his portfolio either two distinct futures contracts
or two distinct forward contracts. The optimal forward contracts dynamic spread-
ing strategy has two components, a speculative component and a minimum-
variance hedging component. The minimum-variance hedging component is
composed of a short position in the nearby contract and a long position in the
deferred contract. The speculative component serves to replicate the growth optimum
portfolio. The speculative component is composed of a short position in the contract
which is the most negatively correlated with the growth optimum portfolio and
a long position in the other contract. The marking-to-market procedure of the
futures positions forces the investor to hold less futures contracts than the corre-
sponding forward contract positions. The analysis is also extended to incomplete
markets and to inter-market spreading. © 1998 Elsevier Science B.V. All rights
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1. Introduction

The bulk of intertemporal futures hedging literature’ has dealt with an
investor who is endowed with a non-traded cash position and is allowed to trade
futures contracts continuously. When the dynamics of the futures settlement
price and the dynamics of the underlying asset price are perfectly correlated, the
investor can achieve the welfare level of the first best optimum (Adler and
Detemple, 1988a). This welfare level is equal to the one the investor would have
reached had he been allowed to trade the primitive assets freely. The optimal
futures trading strategy has the traditional decomposition into a speculative
component and a minimum-variance hedging component (Anderson and Dan-
thine, 1983). When the opportunity set is stochastic, the futures strategy includes
(except for a Bernoulli investor) a Merton/Breeden hedging component which
allows the investor to hedge against the fluctuations of the opportunity set.

When the correlation between the futures settlement price dynamics and the
underlying asset price dynamics is imperfect, the investor cannot reach the first
best optimum welfare level. He can only arrive at the welfare level of the second
best optimum (Adler and Detemple, 1988a). In particular, if the investor is a pure
hedger, he cannot reach a perfect hedge of his non-traded position. Therefore, in
this case, the opportunity set generated by the futures markets is different than
the one generated by the primitive assets markets.

The imperfect correlation case is important since it is frequently faced by
investors. When the futures contract is written on an asset other than the asset of
the non-traded position, there will generally be an imperfect correlation between
the dynamics of the futures settlement price and the dynamics of the asset of the
non-traded position. Hence, using futures contracts in order to cross-hedge the
risk resulted from the non-traded position does not allow the investor to reach
the welfare level of the first best optimum. Even if the futures contract is written
on the asset of the non-traded position, the dynamics of the futures settlement
price and the dynamics of the underlying asset price will be imperfectly corre-
lated in the presence of stochastic interest rates.

One cannot conclude that in the case of imperfect correlation, the constrained
investor will always be worse off compared to the case of perfect correlation. As
is shown in this paper, even in the case of imperfect correlation, an investor can
reach the welfare level of the first best optimum. This can be attributed to the
richness of the futures markets where futures contracts on the same underlying
asset are traded for several maturities. Investors who hold simultaneous position

! See, for example, Adler and Detemple (1988a), Adler and Detemple (1988b), Duffie and Jackson
(1990), Duffie and Richardson (1991), Schweizer (1992), Lioui and Poncet (1996). Another branch
address the issue of the firm’s optimal hedging policies and their determinants (see Ho, 1984; Stulz,
1984; Smith and Stulz, 1985; Eldor and Zilcha, 1987; Zilcha and Eldor, 1991).
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in different futures contracts (intra-market spreading) are able to span the
opportunity set of the primitive assets and thus are able to reach the first best
optimum welfare level.?

A strategy that involves a simultaneous position in distinct futures or forward
contracts on the same underlying asset is called a futures spread or a forward
spread. The spreading literature in futures or forward contracts has mainly dealt
with arbitrageurs, i.e., specific profitable trading strategies that combine several
futures contracts (Wahab, 1995 and references therein). The theoretical analysis
of optimal spreading has been somewhat limited. Schrock (1971) used a tradi-
tional mean-variance static framework in order to analyze the optimal spread-
ing strategy using futures or forward contracts. He established the fact that
spreading strategies are important because they expand the feasible set of
investment opportunities beyond the set defined by out-writing short and long
positions. Poitras (1989) derived similar results using a quadratic utility func-
tion. Peterson (1977) added an economic rationale for trading futures spreads by
postulating that the margin requirements of futures held in spreads are lower
than margin requirements on futures contracts held in out-writing long or short
positions. Da-Hsiang-Donald (1992) used an econometric model and derived
the spreading strategy for an investor (a hedger) endowed with a non-traded
position. Unfortunately, the author assumed that the term structure of interest
rates is flat and equal to zero. This assumption implies® that the futures contract
price and the underlying asset price are perfectly correlated. Moreover, the
prices of futures contracts with different maturities are perfectly correlated.
Hence, there is not a unique solution to the spreading strategy of an investor
seeking to minimize the instantaneous risk of his hedged portfolio. The author’s
results are due to the econometric models postulated a priori for the futures
price and for the underlying asset’s price dynamics.

In this paper, the primitive asset market is complete and the derivative
contracts are arbitrage free priced. Spreading is optimal in our framework since

2We do not attempt to solve for the optimal design of futures contracts which allows an efficient
allocation of risk. The work of Duffie and Rahi (1995) gives an excellent outlook of the literature on
this issue. In a general equilibrium approach, futures innovation intends to complete the primitive
asset market which is assumed to be incomplete. Had the primitive assets market been complete,
redundant futures contracts will not be traded. Elul (1995) has shown that by completing the
financial market, some investor’s could be worse off since futures trading alter the equilibrium
relative prices of the assets. Hence, futures innovation should not necessarily aim for completing the
market and there may exist an optimal level of market incompleteness Ohashi, 1995). In the
framework of the intertemporal hedging literature, the spanning function of the futures contracts has
quite a different role. The futures contracts are used in order to span an opportunity set as the one
spanned by the primitive assets or a subset of this opportunity set. Hence, even if they are redundant,
futures contracts are Pareto improving for constrained investors.

3This argument is true only when the dividend yield is deterministic, which is the case in
Da-Hsiang-Donald (1992).
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the constrained investor faces a complete market (as if he trades the primitive
assets) which allows him to reach the welfare level of the first best optimum. This
spanning property of the derivative contracts which improve the hedging
effectiveness for an investor endowed with a non-traded cash position could be
seen as an economic rationale for the existence of several futures contracts of
different maturities on the same underlying asset.

When interest rates are deterministic, it is well known that forward prices and
the corresponding futures settlement price are identical. Nevertheless, for an
investor seeking to hedge a non-traded position, the forward contract strategy
and the futures contract strategy are different under deterministic interest rates.
The marking-to-market of the futures positions forces the hedger to tail his
hedge when using futures contracts until the point in time the hedge is lifted
(Figlewski et al., 1991). Under stochastic interest rates, futures contracts settle-
ment prices and the corresponding forward contracts prices are different. Al-
though futures markets are more common than forward markets when the
underlying asset is a stock index or a commodity, by solving first in this paper
the investor’s problem in the forward markets case, we are able to detect the
impact of stochastic interest rates on the nature of spreading strategy. In the
second stage, we isolate the effects of the marking-to-market procedure on the
investor’s optimal strategy by comparing the futures spreading strategy to the
forward spreading strategy.

The paper is organized as follows. Section 2 describes the financial markets.
In Section 3, we set the investor’s problem and in Section 4, we derive the
investor’s optimal forward spreading strategy. The effect of marking-to-market
is exhibited in Section 5 where the investor’s optimal futures reading strategy is
derived. In Section 6 we extend our analysis to incomplete markets and inter-
market spreading. Section 7 summarizes our finding and suggests some other
extensions. The appendix contains the proofs of the results.

2. The framework

The (non-constrained) agents trade continuously in a frictionless financial
market until time 7, where 7 is the horizon of the economy. Three long lived
assets are traded, a locally riskless asset (money market account), a discount
bond and a stock index. The discount bond pays one dollar at its maturity,
Tp < 7. At each time ¢, where 0 <t < 1p, the price P(t, 1p) of the discount bond
whose maturity is 1, is given by

Pt, ) = exp{ _ j i (t,T)dT}, (1)

where f(t, T) is the instantaneous forward interest rate for maturity T at time ¢.
The spot rate is r (t) = f(t, t) and the price of the locally riskless asset (an interest
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bearing bank account) is

B(t) = exp{Jtr (s) ds}. 2

Assume that the instantaneous forward interest rate is the solution to the
following stochastic differential equation:*

df(t,T) = u(t,T)dt + v, dZ,(t) + v2 dZ,(0) 3)

for 0 < T < 1p, where p(t,T) is the drift term that satisfies the usual conditions®
such that Eq. (3) has a unique solution and v, and v, are strictly positive
constants. Z(t) and Z,(t) are two independent Brownian motions defined on
a complete probability space (2, F,Q) where Q is the state space, F is the
g-algebra representing measurable events, and Q is the historical probability
measure. The instantaneous forward rate is adapted to the augmented filtration
generated by the two Brownian motions. This filtration which is denoted by
F = {F } 0.9 satisfies the usual conditions.® f(0, T), the initial value of the
instantaneous forward rate, is given by the initial term structure of interest rates
which prevails in the market.

Substituting for the instantaneous forward rate (3) in Eq. (1) and applying
Ito’s lemma, one obtains’

dP(t,7p) = P(t, tp)[[b(t, tp) + r ()] dt — vi(1p — 1) dZ (1)
— va(tp — 1) dZ5(1)], )

where
rD L, , 1, 2
b(t,7p) = — | wt,T)dT + EVI(TD —0° + EVZ(‘CD —1°
t

The stock index pays a continuous dividend yield 6. The stock index price,
denoted by I(t), solves the following stochastic differential equation:

dI(r) = W(t, I(t) — O)I(t)dt + o, I(t)dZ,(t), I1(0) = x >0, (5)

*The suggested model for the instantaneous forward rate allows this economic variable to take
negative values. Unfortunately, this is one of the few polar cases in Financial Economics which
allows for explicit results. For a lucid discussion of this issue, see Subrahmanyam (1996).

> See conditions C.1 p. 80 and C.2 p. 81 of Heath et al. (1992).

6 The o-algebra contains the events whose probability with respect to Q is null. See Karatzas and
Shreve (1991) (p. 89).

7To obtain expression (4) and the expression for b( ), we have followed step by step the approach
in Heath et al. (1992) (p. 82, Eq. (8)).
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where (¢, I(¢)) is the total index yield (dividend plus capital gains) and ¢; > 0 is
the constant volatility. y(t, I(t)) satisfies the usual conditions® such that Eq. (5)
has a unique (strong) solution.

Each (non-constrained) agent follows a portfolio strategy which consists of
the locally riskless asset, the discount bond and the stock index. These strategies
are assumed to be admissible strategies.’

Finally, we assume that there are no arbitrage opportunities on the financial
markets. Following Harrison and Kreps (1979), this is equivalent!® to the
existence of a probability measure equivalent to Q such that the (with respect to
a suitable numéraire) discounted price process plus the cumulated discounted
dividends are martingales. The price of any attainable contingent claim is simply
the conditional expectation of its future cash flows in units of the numeéraire with
respect to this martingale measure.

Let us construct the martingale measure on the financial market constituted
of the three assets when the numeéraire is the locally riskless asset B( ). Define

K(t) = <K1(I)> - _ < o1 0 >‘1<x/f(t, 1(t)) — r(t)> ©
1(t) —vi(tp— 1)  —va(tp — 1) b(t, p)

and assume that

EQ|:exp{ % j :(K%(t) + Kg(t))dt}] < . )

Now, define the new stochastic process

n(t) = eXPUtM(S) dZy(s) + sz(S) dZ(s) — %Jt(Kf(S) + 13(s)) dS}- )

0 0

This is strictly positive continuous local martingale and Novikov’s condi-
tion (7) ensures that it is in fact a martingale with expectation equal to 1 with
respect to Q.'! Hence, we can define a new probability measure equivalent

8See Karatzas and Shreve (1991) (p. 285).

°To save space, we shall not specify the properties of the admissible strategies. The complete
definition given by Cox and Huang (1989) is the one adopted.

107n fact, this equivalence result holds only for the simple strategies, i.e., strategies which need
a portfolio reallocation only a finite number of times (see Harrison and Kreps, 1979; Harrison and
Pliska, 1981). Property 5 of Cox and Huang (1989) definition of admissible strategies excludes
arbitrage opportunities for non simple strategies as proved by Dybvig and Huang (1988). For further
results, see Delbaen and Schachermayer (1994).

11See Karatzas and Shreve (1991) (p. 198).
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to Q such that
do
do

for t < tp.12
Using Girsanov’s theorem,'? the following two processes:

=1n(1) ©)

F,

t

Z\(t) = Z(t) — J K1(s)ds,

. (10)
Z,(t) = Z,(t) — J 1c5(s) ds,

0

are two independent Brownian motions with respect to 0. The dynamics of the
discount bond and of the stock index prices are as follows:

dP(t,tp) = P(t,tp)[r(t)dt — vy(tp — £)dZ4(t) — va(tp — 1) dZ5(1)], (11)

dI(t) = (r(t) — 9)I(t)dt + o,1(2) le(t). (12)
Moreover,
P(t, tp) 1(¢) oI(s)
B(t) and % + J‘O% ds

are martingales with respect to §. Therefore, we arrive at the pricing function for
contingent claims, namely, the expectation of their cash flows expressed in terms
of the riskless asset under the measure Q.

Now to complete the exposition, let us find the dynamics of the spot rate with
respect to the martingale measure . Following Heath et al. (1992),"* one
obtains

w(t,T) = vi(T — 1) + v3(T — 1) — vii1(1) — v2i(1) (13)

for T < tp. Substituting Eq. (13) in Eq. (3), and using Eq. (10) one obtains

f@&, T)=f0,T) + (vi + v%)t<T — ;) +v1Z (1) + v2Z,(t) (14)

12 K aratzas (1997) (p. 4) gives an excellent exposition on the construction of a martingale measure
in our setting.

13 See Karatzas and Shreve (1991) (p. 190).
14 Proposition 3, p. 86 of Heath et al. (1992). See also Musiela and Rutkowski (1997) ( p. 297).
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and, therefore,

2

r(t) = f(t,1) = f(0,0) + (vi + v%)% + 91 Z,(0) + v, Z5(t). (15)

In the next section we present the investor’s problem.

3. The investor’s problem

The investor is endowed with a non-traded cash position of 7 > 0 units of the
stock index. He continuously trades the riskless asset and two forward contracts
with different maturities, written on the stock index. The investor is an expected
utility maximizer.

In our framework, the price of a forward contract maturing at 7; < tp is

I(t)exp{ — d(t; — 1)}

Glt.w) = P(t,1))

(16)

Denote by f(t) the number of the forward contracts of maturity ; held by the
investor at time t and o(t) the number of the locally riskless asset. The investor’s
trading strategy is chosen in such a way that its value at each time ¢ is as follows:

t

W(t) = nl(t) + J nol(s)ds + P(t,rl)fﬂl(s)dG(s,‘cl)

+ P(t,7,) fﬁz(s)dG(s,rz) + o(t)B(?). (17)
0

The investor’s wealth has four components (i) the investor’s non-traded
position, (ii) the present value of the gains/loses from the changes in prices of the
forward contract of maturity t, position, (iii) the present value of the gains/loses
from the changes in prices of the forward contract of maturity 7, position and
(iv) the locally riskless asset position.

The investor maximizes the expected utility of his terminal wealth at his
investment horizon t;. In the following, we assume a Bernoulli investor, i.e., an
investor endowed with a logarithmic utility function. This case is a benchmark
case in Financial Economics (see Adler and Detemple, 1988a, Kuwana, 1995).
Besides, this is the only case in continuous time finance where an explicit
solution can be found for a general process of the market prices for risk
associated with the two sources of uncertainty.

The investor’s utility function is therefore:

u(W(tr, w)) = Ln(W(t, ), weQ (18)
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and the investor’s objective is to

max E°[Ln(W (1,)]

AsP1sP2

s.t. The portfolio strategy is an admissible strategy (19)
which satisfies Eq. (17).

In the next section we derive the investor’s optimal forward spreading strat-
egy explicitly. Although futures markets are more common than forward mar-
kets when the underlying asset is a stock index or a commodity, by solving first
the investor’s problem in the forward markets case, we are able to detect the
impact of stochastic interest rates on the nature of spreading strategy. In the
second stage (in Section 5), we isolate the effects of marking-to-market on the
investor’s optimal strategy by comparing the futures spreading strategy to the
forward spreading strategy.

4. The optimal forward spreading strategy

In this section we present the optimal dynamic forward spreading strategy
that maximizes the investor’s expected utility of terminal wealth. Since the
investor has a Logarithmic utility function, it is well known that the investor will
choose the growth optimum portfolio as an optimal solution to his optimization
problem when his initial wealth is the initial value of his non-traded position.
The value of his wealth at each time ¢ will be nI(0)exp{ — 7;} B(t)n(t)~'. Hence,
the forward contracts spreading strategy allows the investor to replicate this
wealth taking into account the presence of a non-traded cash position. This
forward contracts dynamic strategy is given in the following proposition:

Proposition 1. The optimal trading strategy in forward contract with matur-
ity t, and forward contract with maturity 7, is, respectively,

Bl(t)>:</?i(t)> (ﬁ?(t)) 20
<Bz(r) i) "\ o) 20
where

Va(Ty — icy(t) — [0 + vilty — )]K,(1) W (1)
< Sl(t)> (T2 — T1)oyvs P(t,7,)G(t, 1)
Bs(o)

vty — Bicy(t) — [og + vilty — D)]x,(t) W*(t)
a (T2 — T1)oq V2 P(t, 7,)G(t, 75)
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and
T, —t nul(t)
<ﬁ‘;(r) | n o PG
B}zl(t)> B Ty —t (1) .

T —T1 8 P(t,75)G(t, 75)

The optimal spreading demand for forward contracts presented in Eq. (20) is
composed of two components:'> a speculative component denoted by
(Bi(1), p5(t)) and a minimum variance hedging component denoted by
(Bu(t), B3(1)). Note that there is no Merton/Breeden hedging component which
hedges against the fluctuations of the opportunity set. That is, the myopic
behavior of the Bernoulli investor remains unchanged in the stochastic interest
rates environment.

Let us first analyze the minimum-variance hedging component in Eq. (20).
This component serves to offset the risk which stems from the non-traded
position. Note that, although in our framework the dynamics of the price of the
asset in the non-traded position is driven by one source of uncertainty, the
investor must use two forward contracts in order to neutralize the risk resulted
from this non-traded position. The dynamics of the forward contracts prices are
driven by two sources of uncertainty due to stochastic interest rates. Hence,
when the investor includes a forward contract in his portfolio for hedging
purposes, he introduces a new source of uncertainty into his portfolio. To offset
this new kind of uncertainty, the investor trades another forward contract which
is linearly independent of the first one.

Simultaneous positions in two forward contracts with different maturities
allow the investor to achieve a perfect hedge (zero instantancous variance) of his
non-traded position. The perfect hedge presented in Eq. (20) involves positions
in opposite sign in the two forward contracts. The investor has a short position
in the nearby contract and a long position in the deferred contract. Further-
more, the investor has to continuously rebalance his portfolio since the hedging
demands of the two forward contracts, () and B5(t), are time dependent. This
time dependence is a result of the stochastic interest rates that cause the
volatility of the forward contracts to be time dependent although the underlying
asset’s volatility is not time dependent. The adjusting factors that account for the
difference in volatilities are given by the ratios (t, — t)/(t, —74) and
(ty — )/t — 7,) in Bi(r) and Bi(t) respectively. An additional source of time

15 This is the traditional decomposition which goes back to Anderson and Danthine (1983). For
such a decomposition in continuous time see Adler and Detemple (1988a), Adler and Detemple
(1988Db).
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dependence resulted from a price adjusting factors in Bi(t) and f4(1) given by

nl(t) 7l (t)
PLr)G) Y Pht,)Gt,)

respectively.

One may inquire why the forward contracts dynamic spreading strategy is
composed of a short position taken in the nearby forward contract and a long
position in the distant contract? The economic rationale for this choice stems
from the fact that the nearby forward contract has the highest instantaneous
correlation with the dynamic of the underlying asset price.'® In the context of
the hedging literature one can view the hedging position in the nearby contract
as the traditional offsetting position of the non-traded cash position while the
objective of the long position in the deferred contract is to offset any residual
risk so as to eliminate completely the instantaneous volatility of the hedged
portfolio.

Let us now analyze the speculative component in Eq. (20). This component
allows the investor to replicate the growth optimum portfolio. If
va(t; — tiey(t) — [o1 + vi(t; — t)]ic,(t) > 0, then the speculative component in-
volves a long position in the nearby contract and a short position in the deferred
contract. If vy(7; — )iy (t) — [o1 + vi(t; — t)]K,(t) < O, then the speculative com-
ponent involves a short position in the nearby contract and a long position in
the distant contract. Note that v,(t; — t)i((t) — [a1 + vi(t; — t)]K,(2) is the de-
terminant of the volatility matrix of the growth optimum portfolio price dynam-
ics and a forward contract price dynamics. To inquire further into this
condition, let us present the following lemma:

Lemma. The dynamics of the forward contracts prices are imperfectly negatively
correlated with the growth optimum portfolio dynamics. If v,(t; — Oiq(t) —
[o1 + vi(ti — O)]Ka(t) > O, then the instantaneous correlation coefficient between
the forward contracts prices dynamics and the dynamics of the growth optimum
portfolio value is an increasing function, in absolute terms, of the forward con-
tracts maturity. If vy(t; — t)k1(t) — [0 + vi(t; — t)]Kka(t) < O, then the instan-
taneous correlation coefficient between the forward contracts prices dynamics and
the dynamics of the growth optimum portfolio value is a decreasing function, in
absolute terms, of the forward contracts maturities.

16 To see this, note first that the instantaneous correlation between a futures and the underlying
asset is

(01 + vi(t; — D)oy

01y/(01 +vi(ti — )% + vi(t; — 1)

Taking the first order derivative with respect to the maturity t; leads to the desired result.
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Let us analyze the case of v,(t; — t)k1(t) — [o1 + vi(t; — t)]Kk,(t) > 0. In this
case, the speculative component involves a long position in the nearby contract
and a short position in the deferred contract. Using the Lemma, one can show
that the deferred contract has the highest instantaneous correlation (in absolute
terms) with the growth optimum portfolio. Therefore, a similar interpretation to
that was given for the minimum-variance hedging component in Eq. (20) can
now be given for the speculative component in Eq. (20). Since the forward
contracts price dynamics are negatively correlated with the growth optimum
portfolio value dynamics, the investor shorts the deferred contract to arrive at
the desired position for replicating his optimal wealth. The residual risk which
stems from the short position in the deferred contract is hedged by taking a long
position in the nearby forward contract.

When v,(t; — t)x1(t) — [0 + vi(t; — t)]x,(t) < 0, then the speculative com-
ponent involves a short position in the nearby contract and a long position in
the deferred contract. Hence, in this case, the forward spreading strategy, which
includes both the speculative component and the minimum-variance hedging
component, involves a short position in the nearby contract and a long position
in the deferred contract.

In the next section, we analyze the spreading strategy of this investor when he
faces a futures market.

5. On the effects of marking-to-market

The main difference between forward contracts to futures contracts is the
marking to market procedure attributed to the futures contracts. This procedure
affects the dynamic spreading strategy of an investor endowed with a non-
traded cash position. In this section, we first derive the futures settlement price
and then analyze the investor’s problem. Finally, we compare the forward
spreading strategy to the futures spreading strategy.

The futures contract, written on the asset in the non-traded position (the stock
index), is assumed to be continuously marked-to-market. Following Duffie and
Stanton (1992), its settlement price at time ¢ equals the price at time ¢ of a cash
flow I(z))exp{[i'r(s)ds} at the instant t;, where ; is the maturity of the futures
contract. Hence,

H(t7) _ EQ[I(mexp{I? r(s) ds}l F] (21)

B(1) B())
and

H(t,v) = EO[I(z)|F,]. (22)
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As a result, the arbitrage free settlement price of the futures contract is

i = OO0 g
1 2 23
+ Ealvl(ri —1) } .

Since we allow the investor to trade two futures contracts with different
maturities and a locally riskless asset, he faces a complete financial market and is
able to reach the welfare level of first best optimum as in the case of two forward
contracts and a riskless asset. Therefore, this establishes the grounds for com-
parison of the two optimal strategies which allow the investor to reach the same
optimum.

The futures contracts positions are marked-to-market in an interest rate
bearing margin account. Denote by X () the value of the margin account at time
t associated with futures contract of maturity 7;. This value is

Xi(t) = ftexp {f r(s) ds} Pi(s)dH(s, 7). (24)

0 s

The investor’s wealth at time ¢, W (t), is composed of four components: the
non-traded position, the two margin accounts associated with the futures
positions and the position of the locally riskless asset. Thus,

W(t) = nl(t) + X () + X2(t) + a(t)B(). (25)

The futures contracts dynamic strategy is given in the following proposition:

Proposition 2. The optimal futures trading strategy in the futures contract with
maturity t, and the futures contract with maturity 7, is, respectively,

< 1(t)> _ </fl(t)> N <li;(t)>, 26)
2(1) 2(1) Pa(t)

V(T — Oky(t) — [o1 + vi(ta — t)]xca(t) WH(2)
(t)> (T2 — T4)o1v, H(t,7,)

va(ty — Ok1(0) — [0y + vilty — B)]ica(t) W)
(T2 — T1)o1V2 H(t,t5)

=) N

where

7N
=

NP =B
—
~
~
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and
T, —t nl(t)
<E‘;(r) T -t Hr)
ﬁ > Ty —t (1) .
T, — 11 H(t,715)

The dynamic futures spreading strategy has two components: a speculative
component denoted by (B5(¢), f5(t)) and a minimum-variance hedging compon-
ent denoted by (Bi(t), f3(t)). Note that there is no Merton/Breeden hedging
component to hedge against the fluctuations of the opportunity set. Hence, the
marking-to-market procedure does not change the myopic behavior of the
Bernoulli investor in the presence of interest rate risk.

Let us first analyze the minimum-variance hedging component. It involves
a short position in the nearby futures contract and a long position in the
deferred futures contract for similar reasons as explained for the case of forward
contracts. This stems from the fact that the forward price dynamics and the
futures price dynamics have the same instantaneous volatilities. This is also
the reason that the adjusting factors for the difference in volatilities,
(ts — /(12 — 71) and (t; — )/(to — ;) in BU(¢) and B5(¢), respectively, are the
same as in 5(¢) and B4(¢), respectively. The only difference comes from the price
adjustment factors. While in f%(f) and B(t) they are equal to mI(f)/H(t,7;)
and nl(t)/H(t,7,) respectively, they are equal to wl(t)/P(t,71)G(t,7;) and
nl(t)/P(t,7,)G(t,T,) in Bi(f) and B5(¢), respectively. Hence, while in the case of
futures contracts, one adjusts with respect to the settlement price of the futures
contracts, in the case of forward contracts one adjusts with respect to the present
value of the forward price.

The speculative component of the futures spreading strategy in Eq. (26) has
the same intuitive content as the forward contracts spreading strategy’s specu-
lative component in Eq. (20).

The following lemma compares the optimal forward spreading strategy and
the optimal futures spreading strategy by writing the second in terms of the first.
In the hedging literature, the term that multiplies the forward strategy in order
to obtain the futures strategy is called the tailing factor. However, explicit
expression for the tailing factor are available'” only when interest rates are
deterministic and for an investor interested to hedge his non-traded position. In
the following lemma, we give the tailing factor when interest rates are stochastic
for an investor who seeks to maximize the expected utility of his terminal wealth.

17See Figlewski et al. (1991). A recent paper by Lioui (1997) addresses this issue in the case of
interest rates derivatives.
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Corollary. The relationship between the two legs of the optimal spreading strategy
using futures contracts and the corresponding two legs using forward contracts is

as follows:'®
Bu(t) = TF () x Bu(1), 27)
Ba(t) = TF,(t) x Ba(t), (28)
where
TF(¢) = P(t, 7)) x exp{ —0i+ V%)@ - %01"1(‘51' - t)z}

The corollary implies that: (i) there exist two tailing factors, each one for each
leg of the spreading strategy; (ii) the tailing factors are independent of the
individuals characteristics; in particular they are independent of the investor’s
horizon (this is a ‘separation’ result); (iii) the number of futures contracts held by
the investor is always smaller, in absolute terms, than the corresponding posi-
tion for forward contracts.

The tailing factors are composed of two terms. A discount bond whose
maturity is equal to the maturity of the futures contract. Note that this term is
the one which appears in a deterministic interest rates environment. The second
term depends explicitly upon interest rates volatility. Moreover, this second
term is exactly the ratio of the forward contract price to the futures contract
price. This does not come as a surprise since the difference between the two
optimal spreading strategies stems from the price adjusting factor.

6. Extensions

Up to this point we have based our analysis on the assumption of complete
markets. This was necessary in order to preserve the simplicity of our results. It
also allowed us to show in the previous section the effect of marking-to-market
on the investor’s strategy.

The purpose of this section is twofold. First, we will show how our results are
affected when the assumption of complete markets is relaxed. Second, we wish to
deviate from intra-market spreading which has been the focus of our attention
and examine our results in light of inter-market spreading.

The problem to be solved can be simplified by focusing on a pure hedger,
namely an investor who is infinitely risk averse and whose sole purpose is to
trade derivative assets in order to minimize the risk stemming from his terminal

18 This can be shown directly by comparing Egs. (20) and (26).
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wealth. We limit ourselves to forward contracts and forgo the opportunity to
show the effect of marking-to-market in incomplete markets.

We extend our framework to an incomplete market by adding an additional
source of uncertainty which is specific to the stock index. This appears to
us to be the most natural approach since the term structure of interest rates is
already affected by a specific source of risk. Thus, assuming that the primitive
assets market includes the same locally riskless asset as Eq. (2) and the same
discount bond as Eq. (4), the dynamics of the stock index price process is as
follows:

dI(t) = W(t, 1) — O)I()dt + o, I(t)dZ,(t) + o51(t)dZ4(t), 1(0) = x > 0.
(5)

We assume that forward contracts written on the stock index are traded with
a price at time t for a contract with maturity t; as follows:

Gty = 0P 3= 0)

(29)

Although markets are incomplete any forward contract with a maturity
T; < Tp can be replicated using a suitable strategy. This strategy involves trading
the locally riskless asset, the stock index and a discount bond which matures at
the same time as the forward contract. Such a discount bond is not traded.
However, it can be replicated using the existing discount bond of maturity
7p and the locally riskless asset.

In such a market, only two forward contracts with different maturity dates are
traded. Any additional forward contract would be redundant because it can be
replicated using the two contracts that are already being traded. A simple way to
show this is based on the results found by Harrison and Pliska (1981) whereby
the asset market for diffusion price processes is complete when the volatility
matrix of the traded assets is invertible. Now, assuming that three stock index
forward contracts are traded with maturities 7,,7, and 73 such that
T; < T, < T3 < Tp, we can apply Ito’s lemma to Eq. (29) and get the dynamics of
the price process of each contract as follows:

dG(t,t)) = (-)dt + G(t,7)[(01 + vi(t; — 1)) dZ,(2)
+ vy(r; — 0)dZ,(t) + 03 dZ5(1)]. (30)
We can construct the volatility matrix as follows:
g1 +vi(ty — 1) vty —1t) o3
o1 F vty —1t) vty —1t) 03] (31)
g1 +vi(t3 —1t) vy(t3—1t) o3

It is easy to show that Eq. (31) has a rank of 2 and therefore is not invertible.
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We assume that forward contracts written on the discount bond are also
traded. The price at time ¢ of such forward contracts maturing at time 7; is
P([’ TD)
P(ta Ii)'

g(t, ;) = (32)

Following the previous analysis, one can show that only one interest rate
forward contract will be traded.

The hedger has the option of two trading strategies. In both strategies he will
use only two forward contracts. He can either use two forward contracts written
on the stock index (intra-market spreading) or one stock index forward contract
and an interest rate forward contract (inter-market spreading). A third contract
will always be redundant and therefore our hedger will always be trading in
incomplete markets.

We first turn to examine the case of intra-market spreading. Assume an
investor who is endowed with a non-traded cash position of 7 > 0 units of the
stock index. The investor trades continuously two stock index forward contracts
and the locally riskless asset. The investor’s optimal strategy is chosen such that
the volatility of his portfolio is minimized. He follows an admissible and self
financing trading strategy. Therefore, at each time ¢, the value of his portfolio is
given as follows:

t

W(t) = nl(t) + J ndI(s)ds + P(t,rl)f B1(s)dG(s, 7y)

+ P(t,'cz)ft B(s)dG(s, T5) + a(t)B(t) (33)

0

and then,

dW(t) = ndI(t) + ndl(t)dt +d (P(t,rl) Jt ﬁl(s)dG(s,rl)>

+d <P(t, T5) J‘t ﬂz(s)dG(s,rz)> + o(t) dB(2). (34)
0

Now, substituting for Egs. (5') and (30) in Eq. (34), we get
dw(t) = (-)de

nl(t)oy + B1(O)P(t, T1)G(t, T1)(01 + vi(ty — 1)) — P(%H)(f ﬁl(s)dG(S=T1)> vi(ty — 1)
+ e dZ, (1)
+ Ba(t)P(t, T2)G(t, T2)(01 + vi(T2 — 1)) — P(t,72) <J Ba(s)dG(s, Tz)) vi(ty — 1)

0
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PiO)P(t,T1)G(t, T1)va(ty — t) — P(Eﬁ)(fﬁl(s)d(}(s’fl)) V(T —t)
. dZ5(0)
+ Ba(t)P(t, 75)G(t, T2)va(T, — ) — P(t, T5) <J ﬁz(S)dG(SaT2)> Va(Ty — t)
+ [7l(t)os + B1(OP(t,T1)G(t, T1)03 + Bo(OP(t, 12)G(t, T2)05]1dZ5(2). (35)

One can easily show that the following strategy allows the investor to achieve
a perfect hedge:

B T, —t nl(z)
Bi(t) = — T, -1 X P(t,7)G(t,7,)
(36)
T —t nl(z)
ﬁZ(t) - T, — Tg x I)(t7 Tz)G(t, TZ).

This strategy has the following characteristics. First, a constrained investor
who uses this strategy can achieve a prefect hedge even when markets are not
complete. Second, the strategy involves a short position in the nearby contract
and a long position in the deferred contract. Intuitively, this can be explained
along the lines of the previous section. Finally, if the dividend yield is equal to
zero then this strategy is identical to the one that would have been chosen had
markets been complete.

Turning now to inter-market spreading we assume that the investor trades on
stock index forward contracts and interest rates forward contracts. For simpli-
city and without loss of generality, we assume that both forward contracts have
the same maturity date. In such a case the investor’s wealth at each time ¢ is:

t

W(t) = nl(t) + J ndol(s)ds + P(t,rl)f P(s)dG(s,t4)

t

+ P(t,rl)J 0(s)dg(s, t1) + a(t)B(t), (37)

0

where f(¢) is the number of stock index forward contracts held at time ¢ and 0(t)
is the number of interest rate forward contracts held at time t. We then have

t

AW (1) = ndI(t) + ndl(t)dt + d <P(t, TI)J

0

P(s)dG(s, T 1)>

+d <P(t, T4) J‘t 0(s)dg(s,t 1)> + a(t) dB(¢). (38)

Applying Ito’s lemma to Eq. (32), we get the dynamics of the interest rates
forward contract price process,

dg(t,t1) = g(t, t)[(-)dt — vi(tp — 1) dZ1(1) — va(tp — 1) dZ,(1)]. (39)
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Substituting Egs. (5) and (39) in Eq. (38) yields:

dw() = (-)dt

nl(t)oy + BO)P(t,71)G(t, T1)(01 + vi(ty — 1) — P(t,71) <Jl .B(S)dG(Sa‘H)) vi(ty — 1)
+ Y dZ, (1)
— 0(O)P(t, t1)g(t, Ty)v1(tp — 1) — P(t,74) <J 0(s) dg(safl)> vi(ty — 1)

B@)P(t, t,)G(t, T1)va(ty —t) — P(t,T4) <Jl ﬂ(s)dG(s,r,)) va(ty — 1)
+ 0 dZ,(1)

— 0 P(t, T1)g(t, T1)va(tnp — T1) — P4, 74) <J‘t 0(s) d!/(S’Tl)) va(ty — 1)

0

+ [nl(t)os + B(t)P(t,T,)G(t,71)o5] dZ (). (40)

One can show that the following strategy leads to a perfect hedge:

_ I(t)
PO = = pieaa ™

(41)

I(t) T1 —t
v
P(t,tp)tp — 71

0t = —

This strategy requires the investor to short the stock index forward contract
as well as the interest rates forward contract. Interestingly, a minimum-variance
component does not appear in the stock index forward leg. Furthermore,
when there are no dividends, the position in the stock index forward contract
becomes the usual static position fi(t) = — n. Note, that our result (41) does not
allow zero interest rates risk (v; = v, = 0). This is because the solution to the
investor’s problem assumes non-zero interest rates risk. Therefore, the usual
forward strategy when interest rates are deterministic cannot be obtained from
Eq. (41).

7. Concluding remarks

This paper assumes an investor who has a non-traded position operating in
a stochastic interest rates environment. The investor uses either distinct futures
contracts or distinct forward contracts in order to maximize his expected utility
of terminal wealth. Due to stochastic interest rates, there is an imperfect
correlation between the dynamics of either the futures settlement prices or the
forward prices with the underlying asset price dynamics. Therefore, in order to
reach the welfare level of the first best optimum the investor must trade either
two distinct futures contracts or two distinct forward contracts.
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The optimal forward contracts spreading strategy has two components,
a speculative component and a minimum-variance hedging component. The
investor does not trade derivative contracts in order to hedge against the
fluctuations of the opportunity set. The minimum-variance hedging component
is composed of a short position in the nearby contract and a long position
in the deferred contract. The hedging component serves to offset the risk which
stems from the investor’s non-traded cash position. The speculative component
serves to replicate the growth optimum portfolio. The speculative component is
composed of a short position in the contract which is the most negatively
correlated with the growth optimum portfolio and a long position in the other
contract. The marking-to-market procedure of the futures positions forces the
investor to hold less futures contracts that in the corresponding forward con-
tract positions.

The analysis has been extended to incomplete markets where it is shown that
using two forward contracts still allows the hedger to achieve a perfect hedge
even though the economy is driven by three sources of uncertainty.

The design of the futures contracts in our framework is given exogeneously.
A natural extension of our work would be to find an equilibrium based
explanation to the existence of such a structure. Some papers, using a partial
equilibrium approach, address the issue of futures innovation. The work by
Duffie and Jackson (1989) and Cuny (1993) concerning futures innovation in
a market with frictions concludes that only futures contracts with orthogonal
payoffs will be created since contract creation is costly and correlated contracts
appear to consume resources without expanding the hedging opportunities
available to the investor. The work of Tashjian and Weissman (1995) work
shows, in a static framework, that when the fee is endogenised, it can be optimal
to create futures contracts with correlated payoffs. Our intertemporal setting
suggests that it would also be optimal to create futures contracts with correlated
payoffs when the futures contracts are written on the same underlying asset with
different maturities. Kamara (1993) dealt with the designing of the structure of
forward maturities. However, in his framework forward contracts that have
different maturities are perfectly correlated and thus can be used only for
roll-over purposes.
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Appendix A.
A.1. Proof of Proposition 1

The martingale approach'® is used to solve this problem. One need not
construct a martingale measure on the investor’s financial market (derivatives
assets and riskless asset) since such a market is complete and thus the pricing
function will be the martingale measure constructed in Eq. (9). Note, due to
market completeness, we can use the martingale approach to solve for our
problem even though the investor’s is endowed with a random terminal wealth
(the constrained position). One can see the investor’s problem ‘as if > he was
endowed with an initial wealth whose initial value is the initial value of the
non-traded position.

The investor’s program becomes

max E9[Ln(W(t)))]

W)

s.t. E2 [m} = nl(0)exp{ — d1;}.

Using Cox and Huang (1991) (Proposition 4.2 p. 477), one can easily see that
this program has a unique solution. Using the Lagrangian theory it follows that
the solution to the preceding program is such that

1 1
7w*(ﬁ) — /lmn(r,) =0, (A.1)

where we have used the fact that E2 [Y(t)] = E9[Y(tp)n(z;)]. Thus,
1 _

W*(zy) = ZB(TI)W Y(zp), (A2)
where 1 > 0 is the Lagrangian multiplier associated with the budget constraint.
Using Eq. (A.2) and the budget constraint one obtains

W(z;) = nl(0)exp{ — ot} Bz~ '(t1) (A.3)

By construction of the martingale measure §, the value at each time ¢ of this
investor’s wealth is

WHO) _ o[ W)
Bo) | B

FJ (Ad)

19 For an excellent account see Duffie (1996) (Chapter 10 p. 219). See also the seminal papers by
Karatzas et al. (1987) and Cox and Huang (1989), Cox and Huang (1991).
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Using Cox and Huang (1989) (Lemma 2.5 p. 43) (Bayes rule), Eq. (A.4)
becomes

W)
B(t)

W*(ty)
B(zy)

n 1(t)EQ[ n(ty)

F,} (A.5)

Substituting for the investor’s wealth from Eq. (A.3) yields

W*(t) = nl(0)exp{ — dt;}B(t)n~ (). (A.6)
Applying Ito’s lemma to Eq. (A.6), one obtains

dW*(t) = (-)dt — WH*(t)((t)dZ(t) — WH(t)i,(t) dZ,(2). (A7)

This wealth is also generated by a self-financing strategy satisfying Eq. (17),
and thus satisfies

t

dW*(t) = ndI(t) + ndI(t)dt +d <P(t,‘cl) f

0

ﬁl(s)dG(Sa‘El)>

+d <P(t, ) J Ba(s)dG(s, 1-2)> + o(t)dB(2). (A.8)

Applying Ito’s lemma to Eq. (16), one obtains the dynamics of the forward
contract price as follows:

dG(t,7;) = (+)dt + G(t,t)[(o1 + vi(t; — 1)) dZ(t)
+ vyt — 1) dZy(1)]. (A.9)

Hence, substituting for the stock index price dynamics from Eq. (5) and for
the forward price dynamics from Eq. (A.9) in Eq. (A.8), one obtains

AW*(t) = () dt
—“I(I)O'l + Bi(t)P(t, T1)G(t, Ty) (01 + vi(ty — 1)) — P(I~T1)<J‘I ﬁl(S)dG(S,Tl)>V1(T1 —1)

+ o dZ, (1)
+ Ba(t)P(t, T2)G(t, T2) (01 + vi(Ta — 1)) — P(t,72) <f /))z(S)dG(Sa‘fz)>V1(T2 =1

0

Br(®)P(t, T1)G(t, T1)va(Ty — 1) — P(“&)(f ﬁl(s)dG(S=T1)> va(ty — 1)
+ . dZ(1). (A.10)
+ Ba()P(t, T2)G(t, T2)va(t2 — 1) — P(t, 72) <J Ba(s)dG(s, T2)> V(T2 — 1)
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By equating the diffusion terms from Egs. (A.7) and (A.10), one obtains

nl(t)oy + B1(O)P(t,71)G(t, t1)(0r + vity — 1) — P(E'ﬁ)(J" ﬁl(s)dG(S,T1)> vi(ty — 1)

+ B2(OP(t, T2)G(t, T2)(01 + vi(t2 — 1)) — Pt Tz)(J' Ba(s)dG(s, T2)>V1(T2 -1

= = WH0ry(0)

B1(t)P(t, T)G(t, T1)va(Ty — 1) — P(lsfl)(ft Ba(s) dG(&‘h)) va(ty — 1)

+ B2O)P(t, T2)G(t, T2)va(ta — 1) — P(L, Tz)<f Ba(s) dG(S>Tz)> va(ta — 1)
= — W¥eealt) (A.11)

and solving Eq. (A.11) leads to the desired result.
A.2. Proof of the lemma

The instantaneous correlation coefficient between the dynamics of the growth
optimum portfolio value and the dynamics of a forward contract, whose matur-
ity is 1, price dynamics is

— (01 4 vilm — )i () — va(ti — Dr,(1)
VIO + 1303/ v — 0 + (ol — 1)
where we have used Egs. (A.7) and (A.9). Taking the first-order derivative with
respect to the maturity t; one obtains
01v2[valti — k(1) — (01 + vi(T — D)K,(1)]
(11(0) + 1301 + vi(r; — 1) + (va(1; — 1)})>?

and the result follows.

A.3. Proof of Proposition 2

Since the financial market which is composed of two futures contracts and the
locally riskless asset is complete, the investor’s will reach the welfare level of the
first best optimum. Thus, the investor’s optimal wealth is given by Eq. (A.3) and
its dynamics is given by Eq. (A.7).

When the investor trades future contracts, his wealth satisfies the self financ-
ing property too. Hence, from Eq. (25), the investor’s wealth dynamics is

dW*(t) = ndI(t) + nol(t)dt + dX(t) + dX,(t) + a(t) dB(t). (A.12)
Applying Ito’s lemma to Egs. (24) and (23), one obtains, respectively,
dXt) = r()X;(®)dt + p;(t)dH(t, 1), (A.13)
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dH(t,t;) = (+)dt + H(t,t)[(01 + vi(t; — 1)) dZ4(2)
+ vo(t; — 1) dZ,(1)]. (A.14)
Substituting for Egs. (A.13) and (A.14) in Eq. (A.12), one obtains
dW*(t) = (-)dt + [nl(t)o, + ﬁl(t)H(t,rl)(ol +vi(ty — 1)
+ BAOH(t, w201 + vi(ty — )] dZ,(0)

+ [BuH(t, T )va(ty — 1) + BoOH(t, 2)va(t, — 0]dZ,(0).
(A.15)

Equating the diffusion terms in Egs. (A.7) and (A.15), one obtains
ml(t)oy + BiOH(E 7)o + i1 — 0) + Ba)H(t, T) oy + i — 1)
= — W*0)r(1)

X

Bi(OH(t, Ty)va(Ty — 1) + ﬁz(t)H(t,Tz)Vz(Tz — 1) = — W*t)k(t). (A.16)
and solving Eq. (A.16) leads to the desired result.
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